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PARTI. INTRODUCTION 

If we truly understand cognitive systems, then we must be able to develop 
designs that enhance the performance of operational systems; if we are to 
enhance the performance of operational systems, we need conceptual 
looking glasses that enable us to see past the unending variety of 
technology and particular domains. 

Woods and Sarter, 1993 

Data overload is the problem of our age—generic yet surprisingly resistant to 
different avenues of attack. In order to make progress on innovating solutions to data 
overload in a particular setting such as intelligence analysis, we need to identify the 
root issues that make data overload a challenging problem everywhere and to 
understand why proposed solutions have broken down or produced limited success in 
operational settings. 

Our overall guiding assumption is that to make progress on data overload in any 
setting requires a kind of complementarity. We need to advance our understanding of 
data overload in general by synthesizing results from past studies of data overload 
problems in control centers for engineered and physiological processes. Then we need 
to use this understanding to develop techniques to cope with data overload in the 
specific case of intelligence analysis, which has additional challenges beyond those 
encountered in other domains. Making progress in this specific case will serve 
simultaneously as a way to test for more generic concepts providing feedback to the 
general research base on this issue and as a place where the research base can stimulate 
practical innovations about what would be useful to build. 

In order to achieve these objectives, a cognitive engineering team from the 
Institute for Ergonomics at the Ohio State University (David Woods, Principal 
Investigator, Emily Patterson, Emilie Roth, and Wayne Redenbarger) has 

• completed a Cognitive Systems diagnosis of the sources of data overload problems 
in general, 

• identified how the data overload problem is expressed in intelligence analysis-like 
situations, 

• designed scenarios that instantiate aspects of data overload as experienced by 
intelligence analysts (e.g., the Ariane 501 launch failure, see Patterson, Roth, and 
Woods, in preparation; the Zairean civil war, see Woods, Patterson, Roth, and 
Redenbarger, 1998), and 



• begun to use these scenarios to explore how analysts' strategies work when they are 
confronted with massive amounts of data in the electronic medium (Patterson, Roth, 
and Woods, in preparation). 

In this report, we provide a "diagnosis" of what makes data overload a difficult 
problem based on past studies where we have examined how new computerized 
devices can help overcome or can exacerbate data overload related problems in control 
centers such as mission control for space shuttle operations, highly automated aviation 
flight decks, computerized emergency operations control centers in nuclear power 
plants, and surgical anesthetic management systems in operating rooms. Then we 
describe how intelligence analysis instantiates these issues and the additional challenges 
that are presented when monitoring human or organizational processesas opposed to 
engineered or physiological processes. 

1. Data Overload is a Difficult and Generic Problem 

Information is not a scarce resource. Attention is. 
Herbert Simon1 

Each round of technical advances, whether in artificial intelligence, computer 
graphics, or electronic connectivity promises to help people better understand and 
manage a whole host of activities from managing businesses to space missions to the 
national air space. Certainly, this ubiquitous computerization of the modern world has 
tremendously advanced our ability to collect, transmit, and transform data producing 
unprecedented levels of access to data. 

However, our ability to interpret this avalanche of data (i.e., to extract meaning 
from artificial fields of data) has expanded much more slowly, if at all. In studies across 
multiple settings, we find that practitioners are bombarded with computer processed 
data, especially when anomalies occur. We find users lost in massive networks of 
computer based displays, options, and modes. Such difficulties help spur technologists 
to new rounds of development, but after each round, we continue to find beleaguered 
practitioners in virtually all areas of work and activity trying to cope with data overload 
in one form or another. 

11 In written publications, Simon has made this point several times: 
"The information-processing systems of our contemporary world swim in an exceedingly rich soup of 
information, of symbols. In a world of this kind, the scarce resource is not information; it is the processing 
capacity to attend to information. Attention is the chief bottleneck in organizational activity..." (Simon, 
1976, p. 294). 
"A design representation suitable to a world in which the scarce factor is information may be exactly the 
wrong one for a world in which the scarce factor is attention." (Simon, 1981, p. 167). 



Why is data overload such a generic and persistent problem? Why has it been so 
tremendously difficult to make progress on this hallmark of the "information age?" In 
this paper we provide a diagnosis for why data overload is a difficult problem that has 
resisted progress. Focusing attention on root issues reveals paths for innovation. 

1.1 An Explosion in Data Availability 

"The whole place just lit up. I mean, all the [alarm] lights came on. So 
instead of being able to tell you what went wrong, the lights were 
absolutely no help at all." 

Comment by one space controller in mission control after the 
Apollo 12 spacecraft was struck by lightning (Murray 
and Cox, 1989). 

"I would have liked to have thrown away the alarm panel. It wasn't 
giving us any useful information." 

Comment by one operator following the Three Mile Island nuclear 
power plant accident (Kemeny, 1979). 

One level of technology change has created or exacerbated data overload 
problems: as computerization increasingly penetrates a field of activity, the power to 
collect and transmit data outstrips our ability to interpret the massive field of data 
available. Our problem is rarely getting the needed data, instead the problem is finding 
what is informative given our interests and needs in a very large field of available data. 
For example, one can find a version of the following statement in most accident 
investigation reports: 

"although all of the necessary data was physically available, it was not 
operationally effective. No one could assemble the separate bits of data to see 
what was going on" (Joyce and Lapinski, 1983). 

This problem has expanded beyond technical fields of activity (an airplane 
cockpit or power plant control room) to everyday areas of activity as access to and the 
capabilities of the Internet have grown explosively. People have access to huge 
quantities of data in principle. However, they don't have the tools to cope with email 
overload or the thousands of "hits" returned by a web query. 

Let us refer to this level of impact of technology change on data overload as the 
data availability paradox: more and more data is available in principle, but our ability to 
interpret what is available has not increased. This seems paradoxical because all 
participants in a field of activity recognize that having greater access to data is a benefit 



in principle. On the other hand, these same participants recognize how the flood of 
available data challenges their ability to find what is informative or meaningful for their 
goals and tasks. 

The data availability paradox is an example of a paradox of simultaneous success 
and vulnerability. Technological change grows our ability to make data readily and 
more directly accessible - the success, and, at the same time and for the same reasons, 
the change increasingly and dramatically challenges our ability to make sense of the 
data available - the vulnerability. 

1.2 People Can Find the Significance of Data; The "Wow!" Signal 

The irony of the data availability paradox is that people in general are very good 
at finding the significance of data in many conditions. For example, Figure 1 is a 
printout of numbers and letters in a structure of columns and rows. An observer 
highlighted some of these data elements, writing the note "Wow!" in the margin. 
Clearly, these data elements were highly significant to this observer.2 

2   Kraus, J. (1979). We Wait and Wonder. Cosmic Search Vol. 1 No. 3 
(http://www.bigear.org/vollno3/wonder.htm) 

Excerpts: 
"Are we alone or are there other beings out there across the immense reaches of space who 
might be sending out radio signals we could hear?" Radio observatories, such as the Ohio State 
- Ohio Wesleyan radio observatory, try to answer this question by searching for signals which 
might indicate an extraterrestrial intelligent origin. 

"In mid-August (1977) Jerry Ehman showed Bob Dixon, Dick Arnold and me a section of new 
computer print-out with all of the characteristics that one might expect from an extraterrestrial 
beacon signal. Jerry's amazement was reflected by the words "Wow!" which he had written on 
the margin of the print-out (Figure 1). Bob, Jerry, Dick and I had urgent discussions about its 
significance. We soon were referring to it as the "Wow!" signal. 

The print-out format, which Bob Dixon had designed, consisted of 50 columns, one for each 
channel, with a single digit printed every 12 seconds indicating the signal level in that channel 
in units above the background level (the technical term for the unit used is one "standard 
deviation" or one "sigma"). A blank signified that the level was at zero. Any number above 4 
or 5 might be considered as significant and probably not due to some random fluctuation. In 
order to accommodate levels above 9 with a single character, Bob arranged that the computer 
run through the alphabet with A for 10 through Z for 35. 

What Jerry had noted was a sequence of characters in Channel 2 running: 6, E, Q, U, J, 5. When 
plotted up they produced a pattern which matched exactly (within measurement error) the 
telescope antenna pattern. This told us that the source was very probably celestial, that is, fixed 
with respect to the star background and that it passed through the telescope beam with the 
earth's rotation. It was strong (30 sigmas or 30 times the background) and because it appeared 



Several things should strike us as we consider this example. To us, the data 
elements look like a meaningless mass of numbers and letters, since we 
• lack the knowledge of this observer (a radio astronomer), 
• lack any knowledge about what and how the elements symbolize (e.g., they 

represent radio telescope signals coded as the number of standard deviation units 
above background level), 

• have no particular expectations about what is background, typical, or recent (the 
norm for years has been random, low level signals), 

• do not know the goals of the observer (searching space for patterns of signals that 
might indicate an extraterrestrial intelligent origin), and 

• do not know how patterns of signals that might indicate an extraterrestrial 
intelligent origin would be expressed in the representation. 

But the data elements are not meaningless for the experienced, knowledgeable 
observer. While the representation looks quite crude, it does provide some support. 
The data is selected, pre-processed, and organized to enable experienced observers to 
scan for patterns. The observers are looking for an unknown, new signal, yet they can 
determine some properties or relationships to look for —departures from background, 
patterns associated with signals coming from different kinds of sources and, 
particularly, sources of extraterrestrial intelligent origin. The data is laid out in parallel. 
Given their knowledge in the field of practice and experience at scanning this 
representation, observers can recognize interesting patterns that stand out against the 
background. For example, radio astronomers at one point noticed an unusual pattern 
which further investigation revealed as a new natural phenomenon—pulsars. 

While knowledgeable, experienced observers can find significant patterns in this 
data field, we are also struck by the fragility of this process given representations and 
tools like this printout. First, to succeed at all requires great investment in human 
expertise - people knowledgeable in the field of practice and practiced at observing 
through this representation. Second, even though people can succeed, we often find 
cases where the people involved miss significant aspects of the data field.' Third, the 
kinds of representations developed in this case and others (such as status boards, 
annunciator panels, logs, and trend plots in traditional control rooms) are 
technologically crude. It seems so obvious that applying more sophisticated computer 

in only one channel it was narrow-band (width 10 kilohertz or less). But even more significant, 
it was intermittent. A steady signal would have appeared two times on the record a few 
minutes apart as our telescope with its twin-beam scanned the sky. (The possibility that only 
one horn was functioning at the time can be ruled out because the two horns are balanced and, 
if one were out, the system would have been inoperative.) So it was an "on and off" signal! 
Was it intended for us? We decided that we should continue to scan the same region of sky on 
the chance that the signal might reappear. But it never did, and after weeks of patient listening 
we moved on with our survey to other parts of the sky. 



processing and graphics capabilities should lead to more effective representations and 
tools with respect to data overload. 

This example illustrates that people can find the significance in a field of data 
(i.e., people possess the competence to find the significance in a field of data though 
they may not always exhibit this competence in practice for specific cases). The 
questions for us to consider here become: How are people able to do this at all? How 
does computer technology affect people's ability to do this? How can we design 
visualizations to help people do this? 
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Figure 1. The "Wow!" signal. 

1.3 "A Little More Technology Will Be Enough": The Technology-Centered 
Response to Data Overload 

Criando difficuldades para vender facilidades (creating difficulties to sell 
solutions). 

common Brazilian saying 

Technologists are aware of the data availability paradox, at least implicitly. This 
occurs because the systems they develop almost always have surprising effects and 
sometimes have disappointing effects such as new operational problems (e.g., the case 
of cockpit automation: Billings, 1996; Sarter, Woods, and Billings, 1997; Woods and 



Sarter, in press). However, these automation surprises only spur new levels of 
technology-centered work in the hope that the next technological advance will prove to 
advance our performance in interpreting the ever-larger fields of data previous 
technological advances have created.3 

As the powers of technology explode around us, developers imagine potential 
benefits and charge ahead in pursuit of the next technological advance. The claim is 
that data overload and other problems will be solved by significant advances in 
machine 'information' processing (i.e., the technology for creating sophisticated 
graphics, for connecting distant people together, and for creating intelligent software 
agents). However, developers typically proceed in a technology-centered way 
(Winograd and Woods, 1997): 
1. Technologists imagine how technological advances or new technological systems 

have promise to influence human cognition, collaboration, and activity. 
2. They justify investment in the new developments by claiming that the new 

technology will increase productivity and reduce errors and costs, while they calm 
fears about development risks by saying they are just providing a supporting tool 
for practitioners who can choose to use it as a backup or as another option. 

3. The proponents assume that, if you could build it, the imagined impact would come 
to pass. Research and development activity is focused exclusively on demonstrating 
advances towards such systems. 

4. Studies of the field of practice occur only as impasses in technological development 
occur. 

5. Eventually, interfaces are built which connect the technology to users. These 
interfaces typically undergo some usability testing and usability engineering to 
make the technology accessible to potential users. 

Occasionally, useful systems emerge from the pursuit of technological advances 
without reference to human activities (though such advances tend to be used in ways 
quite different from the intentions of the developers). However, empirical studies on 
the impact of new technology on actual practitioner cognition, collaboration, and 
performance have revealed that new systems almost always have surprising 
consequences or even fail (e.g., Norman, 1990a; Woods, 1993; Sarter, Woods and 
Billings, 1997). Often the message from users, a message carried in their voices, their 
performance, their errors, and their adaptations, is one of technology-induced 
complexity. In these cases, technological possibilities are used clumsily relative to the 
conditions in the field of practice so that systems intended to serve the user turn out to 

3 Data overload difficulties obviously pre-date the recent rapid changes to different computer 
technologies (e.g., the quotes referring to data overload in the traditional control center in 
operation during the Three Mile Island nuclear power accident). The transition to the computer 
medium as a basic mechanism for data access and display has provided the opportunity for 
considerable tightening of the data availability paradox across a broader range of settings. 



add new burdens often at the busiest times or during the most critical phases of the task 
and create new types of error traps (Woods et alv 1994, chapter 5). 

For example, users can be surprised by new autonomous technologies that are 
strong but silent (Billings, 1996; Woods and Sarter, in press), asking each other 
questions like: 
• What is it doing now? 
• What will it do next? 
• Why did it do this? 
In other words, new technology transforms what it means to carry out activities within 
a field of practice—changing what knowledge is required and how it is brought to bear 
to handle different situations, changing the roles of people within the overall system, 
changing the strategies they employ, changing how people collaborate to accomplish 
goals. 

This is a fundamental finding repeated in many fields of practice and with many 
kinds of technology. Systems which are developed putatively to aid users, when 
viewed in context, often turn out to create new workload burdens when practitioners 
are busiest, new attentional demands when practitioners are plagued by multiple voices 
competing for their attention, new sources of data when practitioners are overwhelmed 
by too many channels spewing out too much "raw" data. Ironically, in practice such 
technology-centered systems become yet another voice in the data cacophony around us. 

The conclusion from research on the impact of technology change is that 
expanding the powers of technology is a necessary but not sufficient activity for 
supporting human cognition, collaboration, and performance (Winograd and Woods, 
1997). What is paradoxical about this (Woods, 1984) is that human-centered solutions 
will almost always make use of technological powers for 
• creating new kinds of visualization that reveal how a system, process, device, or 

activity normally functions and how it functions in anomalous ways, 
• connecting people in ways that support collaboration and coordinated activity, and 
• creating semi-autonomous machines that function as team players in support of 

their human supervisor or manager. 

Ultimately, solving data overload problems requires both new technology and 
an understanding of how systems of people supported by various tools extract meaning 
from data. Our design problem is less can we build a visualization or an autonomous 
machine, but rather—what would be useful to visualize and how to make automated 
and intelligent systems team players. A little more technology, by itself, is not enough 
to solve generic and difficult problems like data overload, problems that exist at the 
intersections of cognition, collaboration, and technology. 

8 



PART II. A COGNITIVE DIAGNOSIS OF DATA OVERLOAD 

2. Characterizations of Data Overload 

There are three basic ways that data overload has been characterized: 
1. As a clutter problem where there is too much data: therefore, we can solve data 

overload by reducing the number of data bits that are displayed, 
2. As a workload bottleneck where there is too much to analyze in the time available: 

therefore, we can solve data overload by using automation and other technologies to 
perform activities for the user or to cooperate with the user during these activities, 

3. As a problem in finding the significance in data when it is not known a priori what 
data from a large data field will be informative: therefore, we can solve data 
overload through model-based abstractions and representation design (Woods, 
1984; Vicente and Rasmussen, 1992; Zhang and Norman, 1994)—better organizing 
the data to help people extract meaning despite the fact that what is informative 
depends on context. 

2.1 Clutter 

"Clutter and confusion are failures of design, not attributes of 
information." 

Tufte, 1990, p. 51 

The first way that people have characterized data overload is simply that there is 
"too much stuff." Such a diagnosis leads designers to try to reduce the available data. 
The filtering is applied at the level of the base data elements for that application. 

This approach arose in the early 1980's as a "solution" to the problem of "clutter" 
in the design of individual computer-based displays. The approach led developers to 
ask: how much is too much data for people to perceive at one time or what is the 
maximum rate of data people can process? Developers proposed guidelines for display 
design that limited the number of pixels that could be lit on the screen (given 
technological advances this measure of screen density is obsolete, but other ways to 
define what are too many screen elements can and have been proposed). 

This has not proven to be a successful or fruitful direction in solving data 
overload and has faded in large part. As we will examine in section 4.2, this approach 
has failed because: 
•   it misrepresents the design problem—see for example Tufte (1990) and Zhang and 

Norman (1994); one specific thematic example is that reducing data elements on one 
display does not reduce the available data, but rather shifts where and how data is 



accessed in the larger system, it increases people's need to navigate across multiple 
displays (Woods and Watts, 1997), 

• it is based on erroneous assumptions about how human perception and cognition 
work; for example, the questions about maximum human data processing rates are 
meaningless and misleading because among other things people re-represent 
problems, re-distribute cognitive work, and develop new strategies and expertise as 
they confront complexity, 

• it is utterly incapable of dealing with the context sensitivity problem—in some 
contexts, some of what is removed will be the relevant data. 

Systems that reduce or filter available data are brittle in the face of context 
sensitivity. First, some of the usually unimportant data may turn out to be critically 
informative in a particular situation. For example, one nuclear power plant accident 
scenario is difficult precisely because the critical piece of data is usually unimportant 
(Roth et al., 1992). Second, some data that seems minor now may turn out to be 
important later after new events have changed the context. For example, in geopolitical 
affairs, in the 1997 Zaire civil war, one opposition figure, Kabila, surprisingly emerged 
as the leader of the rebel forces. Previous data about Kabila would have been 
considered minor, but it took on new significance after he emerged as a major figure in 
the events of 1997 (e.g., Kabila's ties to Ugandan and Rwandan leaders forged during 
their time as rebels is one key to Kabila's rise from obscurity and the later course of 
events in the civil war). 

2.2 Workload Bottleneck 

The second characterization of data overload has emerged in settings where 
access to data has grown quickly and explosively. In these contexts, such as web-based 
activities and intelligence analysis, participants use the words "data overload" in an 
everyday way that means they are experiencing what Human Factors professionals call 
a workload bottleneck-there are simply too many individual data units to examine 
them all manually in the time available. 

In search of mechanisms to ease the bottleneck, people propose techniques such 
as: 
• aids to search a database of reports, messages, etc. 

~ indexing the data base 
~ search aids 
~ visualization of the data base 

• automation 
~ software agents as sentinels, notifiers, etc. 

Workload bottlenecks may be a potentially useful way to think about data 
overload. It certainly describes the phenomena experienced by some users as their field 
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of activity changes as a function of the reverberation of technological and 
organizational changes. In such settings, user tasks previously involved manually 
examining each report, source, or message they found as potentially relevant and 
synthesizing an assessment from these base data. Technological changes provide the 
users with access to so many reports, sources, messages, etc., that the resulting 
bottleneck forces users to decide what subset of reports they should examine or read. 

Seeing data overload as a workload bottleneck leads developers to propose 
autonomous machine information processing - syntactic "relevance" metrics to 
prioritize reports for the user, intelligent software agents to notify users when particular 
types of data become available, push technologies—that identify what has been defined 
as the most relevant stuff for the user and modify the availability or accessibility of that 
material relative to other material. Development and deployment of such systems are 
moving forward rapidly in many areas. 

Interestingly, the developments underway with software agents parallel 
previous cases where technologists have developed and deployed automation 
ostensibly to reduce workload bottlenecks - most notably in cockpit automation, but 
also in other settings such as automated systems in anesthetic management during 
surgery. The effects produced by these natural experiments have been examined (cf., 
e.g., summaries in Norman, 1990b; Billings, 1996; Sarter, Woods, and Billings, 1997; 
Woods and Sarter, in press). 

The findings clearly show that technology for autonomous software agents is 
necessary but not sufficient to create useful systems to cope with data overload seen as 
a workload bottleneck. Introducing autonomous machine agents changes the 
cooperative structure creating new roles, new knowledge requirements, new 
judgments, new demands for attention, and new coordinative activities. Failing to 
address or support these requirements in design leads to patterns of breakdowns in 
coordination such as clumsy automation and automation surprises (Patterson et al, 
1998). 

Rather than pursue how to make intelligent and automated systems team players 
(summaries of research results are available based on investigations in aviation; e.g., 
Sarter et al., 1997), we will pursue another interpretation of the cognitive factors that 
underlie data overload. 
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2.3 The Significance of Data 

It is of the highest importance in the art of detection to be able to 
recognize, out of a number of facts, which are incidental and which are 
vital. 

Sherlock Holmes4 

A cognitive systems view can provide a framework for understanding why data 
overload has been so resistant to technology-centered developments and why such 
developments seem to exacerbate rather ameliorate the data availability paradox. By 
providing a better diagnosis of why it has been so difficult to escape from or cope with 
data overload, these concepts will help frame the design problem in more productive 
channels. 

The starting point for this approach is recognizing that large amounts of 
potentially available data stress one kind of cognitive activity—focusing in on the 
relevant or interesting subset of data for the current problem context. When people are 
unable to assemble or integrate all of the relevant data, this cognitive activity has 
broken down. 

People are a competence model for this cognitive activity because people are the 
only cognitive system that we know of that is able to focus in on interesting material in 
natural perceptual fields, even though what is interesting depends on context. When people 
work in artificial perceptual fields, their ability to carry out this cognitive activity 
depends on the design of artifacts, representations, and supporting systems. 

The ability to orient focal attention to "interesting" parts of the natural perceptual 
field is a fundamental competency of human perceptual systems (Rabbitt 1984; Wolfe 
1992). 

"The ability to look, listen, smell, taste, or feel requires an animal capable 
of orienting its body so that its eyes, ears, nose, mouth, or hands can be 
directed toward objects and relevant stimulation from objects. Lack of 
orientation to the ground or to the medium surrounding one, or to the 
earth below and the sky above, means inability to direct perceptual 
exploration in an adequate way (Reed, 1988, p. 227 on Gibson and 
perceptual exploration in Gibson, 1966)." 

4 From A. Conan Doyle's "The Reigate Squire," first published in both Strand and Harper's in June 1893 
(Hardwick, 1986). 
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Both visual search studies and reading comprehension studies show that people 
are highly skilled at directing attention to aspects of the perceptual field that are of high 
potential relevance given the properties of the data field and the expectations and 
interests of the observer. Reviewing visual search studies, Woods (1984) commented, 
"When observers scan a visual scene or display, they tend to look at 'informative' areas 
... informativeness, defined as some relation between the viewer and scene, is an important 
determinant of eye movement patterns" (p. 231, italics in original). Reviewing reading 
comprehension studies, Bower and Morrow (1990) wrote, "The principle ... is that 
readers direct their attention to places where significant events are likely to occur. The 
significant events ... are usually those that facilitate or block the goals and plans of the 
protagonist." 

In the absence of this ability, for example in a newborn, as William James put it 
over a hundred years ago, "The baby assailed by eye, ear, nose, skin, and entrails at 
once, feels it all as one great blooming, buzzing confusion" (James, 1890,1488). The 
explosion in available data and the limits of computer-based displays have left us often 
in the position of that baby—seeing a "great blooming, buzzing confusion" in the 
virtual data fields that technology makes so easy to create. 

If we understand the mechanisms that support the ability which people possess 
to find the significance of data when acting in natural perceptual fields, we will be able 
to identify constraints, criteria, and techniques that will help people exhibit this ability 
when they work in the virtual perceptual fields created by modern technology. 

3. Cognitive Factors and Data Overload 

Given an enormous amount of stuff, and some task to be done using some 
of the stuff, what is the relevant stuff for the task? (italics in original) 

Glymour 1987, p. 65 

3.1 Why Is Focusing In On What Is Interesting Difficult? The Problem of Context 
Sensitivity 

"1202." Astronaut announcing that an alarm buzzer and light had gone off 
and the code 1202 was indicated on the computer display. Followed by 
these replies from mission controllers: 

"What's a 1202?" 
"1202, what's that?" 
"12...1202 alarm." 
Dialog as the LEM descended to the moon during Apollo 11 

(Murray and Cox, 1990). 
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The cognitive activity of focusing in on the relevant or interesting subset of the 
available data is a difficult task because what is interesting depends on context. What is 
informative is context sensitive when the meaning or interpretation of any change (or 
even the absence of change) is quite sensitive to some but not all the details of the 
current situation or past situations. 

Consider this example: 
A [computer] program alarm could be triggered by trivial problems that 
could be ignored altogether. Or it could be triggered by problems that 
called for an immediate abort [of the lunar landing]. How to decide which 
was which? It wasn't enough to memorize what the program alarm 
numbers stood for, because even within a single number the alarm might 
signify many different things. "We wrote ourselves little rules like If this 
alarm happens and it only happens once, don't worry about it. If it 
happens repeatedly, but other indicators are okay, don't worry about it."' 
And of course, if some alarms happen even once, or if other alarms 
happen repeatedly and the other indicators are not okay, then they should 
get the LEM [lunar module] the hell out of there. 

Response to discovery of a set of computer alarms linked to 
the astronauts displays shortly before the Apollo 11 mission 
(Murray and Cox 1990). 

In this example, the alarm codes mean different things depending on the context 
in which they occur. This and other examples reveal that the meaning of a particular 
piece of data depends on 
• what else is going on, 
• what else could be going on, 
• what has gone on, and 
• what the observer expects or intends to happen. 

To take another example from the Zaire civil war during 1997, many reports 
contained the same basic fact—a town fell to the rebels. However, the significance of 
that fact could be quite different depending on other data 
• when Lubutu fell, the significance was that the rebel soldiers were pursuing 

refugees from their rival ethnic group; 
• when Lubumbashi fell, the issue was control of mineral resources; 
• when Kasindi fell, the significance was that allies (Uganda) had crossed national 

borders; 
• when Kisangani fell, it showed the rebels were effective fighters in their showdown 

with government forces. 

Formally, information is a relation between the data, the world the data refers to, 
and the observer's expectations, intentions, and interests (cf., Woods, 1991). 
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Understanding this is critically important to making progress on data overload. To 
repeat, the significance of a piece of data depends on 
• other related data, 
• how the set of related data can vary with larger context, 
• the goals and expectations of the observer, and 
• the state of the problem solving process and stance of others. 

There is a widespread myth that information is something in the world that does 
not depend on the point of view of the observers and that it is (or is often) independent 
of the context in which it occurs. This is simply not the case. There are no facts of fixed 
significance. The available data are raw materials. A particular datum gains 
significance or meaning only from its relationship to the context in which it occurs or 
could occur including the perspective of observers. As a result, informativeness is not a 
property of the data field alone, but is a relationship between observers and the data 
field. 

Take the case of a message about a thermodynamic system which states that 
valve X is closed. Most simply, the message signals a component status. If the operator 
knows (or the message also states) that valve X should be opened in the current mode 
of operation, the message signals a misaligned component. Or the message could 
signify that with valve X closed, the capability to supply material to reservoir H via 
path A is compromised. Or given still additional knowledge (or data search), it could 
signify that with valve X closed, the process that is currently active to supply material 
to reservoir H is disturbed (e.g., data such as actual flow less than target flow, or no 
flow, or reservoir H inventory low). Furthermore, the significance of the unavailability 
or the disturbance in the material flow process depends on the state of other processes 
(such as, is an alternative flow process available or is reservoir H inventory important 
in the current operating context). Each interpretation is built around what an object 
affords the operator or supervisor of the thermodynamic system, including an implicit 
response: correctly align component, ensure capability to supply material (or take into 
account the consequences of the inability to do so), repair the disturbance in the 
material flow process (or cope with the consequences of the disturbance), or discount 
these messages based on other current objectives of greater importance for the context. 

In this example, the significance of a datum depends on, first, a set of contextual 
data. Second, which pieces of data fall into this relevance set can change both with 
system state and with the state of the problem solving process. The latter is particularly 
important—what data are relevant depend on where one is in the problem solving 
process. Examples of how the supervisor's situation assessment or mindset affects the 
interpretation of an alarm include: 
• If the background situation assessment is "normal system function," then the alarm 

is informative, in part, because it signals that conditions are moving into abnormal 
or emergency operations. 
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• If the background line of reasoning is "trying to diagnose an unexpected finding," 
then the alarm may be informative because it supports or contra-indicates one or 
more hypotheses under consideration. 

• If the background line of reasoning is "trying to diagnose an unexpected finding/' 
then the alarm may be informative because it functions as a cue to generate more (or 
to broaden the set of) candidate hypotheses that might explain the anomalous 
process behavior. 

• If the background line of reasoning is "executing an action plan based on a 
diagnosis," then the alarm may be informative because it functions as a cue that the 
current working hypothesis may be wrong or incomplete since the monitored 
process is not responding to the interventions as would be expected based on the 
current working hypothesis. 

Given hindsight or the position of an omniscient observer, one can specify 
exactly what data are needed for the ultimate solution. However, this misses the 
cognitive task of focusing in on that relevant subset that is critical from the point of 
view of the person in the problem solving situation. Hindsight bias obscures the critical 
cognitive activity. This is why technology-centered approaches have been unsuccessful 
in coping with data overload. They miss what makes the problem difficult, and they 
miss the opportunity to learn from how people are able to extract meaning in natural 
fields despite being bombarded with sensory stimulation at an elemental level of 
analysis. 

All techniques to cope with data overload must specify how they deal with context 
sensitivity. Particular techniques may try to finesse the context sensitivity problem, that 
is, they avoid confronting the problem directly, remaining content to nibble away at it 
through indirect means. Some techniques may be brittle, others robust. Brittle 
techniques cope with some sources of context sensitivity but break down quickly when 
they encounter more difficult cases. Some techniques may attempt to make machine 
reasoning more sensitive to context as an autonomous agent, while others are aimed at 
restructuring virtual worlds to enable the basic human competence to operate as it does 
in natural perceptual fields. But in the end, no substantial progress is possible on data 
overload without coping in one way or another with the context sensitivity of what is 
informative. 

3.2 How Are People Able To Focus In On What Is Interesting? 

Since people have the ability to cope with the context sensitivity of what is 
informative, they become the model for how to be competent at this task, a model that 
we need to understand in order to make fundamental progress. It is important to note 
that people are the only extant competence model. 
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Mechanisms of human perception and cognition that enable people to focus on 
the relevant subset of the available data, even though what is interesting depends on 
context, include: 
• processes of perceptual organization, e.g., 

~ pre-attentive processing that organizes the perceptual field into meaningful units 
and relationships, 
~ the fact that there exist nested layers of structure in natural perceptual fields. 

• processes of attentional control, e.g., 
~ a mix of goal-directed and stimulus-driven processing, 
~ the center-surround structure of vision, 
~ the relationship between focal attention and orienting perceptual functions, 

• anomaly-based processing, e.g., 
~ contrast-based computations that pick out and focus on anomalies (departures 
from typicality) and that depend on relative differences (difference in a 
background). 

3.2.1 Perceptual Organization. 

I am standing at the window and see a house, trees, sky. And now, for 
theoretical purposes, I could try to count and say: there are.. .327 nuances 
of brightness [and hue]. Do I see "327"? No; I see sky, house, trees. 

Wertheimer, 1923/19505; 

The quote from Wertheimer captures a fundamental aspect of human perception 
and cognition that relates to data overload in virtual environments. If I count elements 
in the perceptual field, there are an overwhelming number of basic elements varying in 
hue, saturation, and brightness across the visual field. But this avalanche of data does 
not overwhelm us because the processes of perception structure the scene into a few 
objects, events, and relationships between those objects (sky, house, trees). As one 
commentator on perception put it, "The process of organization reduces the stimulus 
data ... it groups large number of picture elements into a small number of seen objects 
and their parts" (Goldmeier, 1982, p. 5). 

Meaning attaches to the end product of the grouping. The parts of the scene 
exist not as simply components of a larger whole, rather they act as carriers of their 
function within the whole. "What is perceived ... are the units and subunits, figures on 
a background, which result from perceptual grouping." The observer sees a field "... 
composed of objects, things, their form, their parts and subparts, rather than of an 
enormous list of stimulus elements" (Goldmeier, 1982, p. 5, emphasis added). The parts 

5 Translated from the original by N. Sarter. 
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and elements define higher levels of structure—objects and events in the world (Flach et 
alv 1995). 

The ubiquitous computerization of the workplace provides the designer with the 
freedom to create a virtual perceptual field. The designer can (and must) manipulate 
the perceptual attributes of the virtual field (Wertheimer's 327 nuances of hue, 
brightness, saturation and shape, motion, etc. relative to other parts of the visual scene) 
that would automatically specify objects and their relationships in a natural scene. This 
results in a need to understand how perceptual attributes and features can be used as 
resources whose joint effect produces an organized and coherent virtual perceptual 
field. 

One approach (data overload results from too much stuff) suggests that the answer to 
cluttered computer displays and data overload is to reduce or filter out data. Only use 
a few color categories. Reduce the number of pixels. Indicate less on the display. In 
contrast, studying how the perceptual system works in natural fields, as summarized 
above, leads us to a different approach. What matters in avoiding clutter and confusion 
is perceptual organization. More marks in the medium for representation, if they are used 
to better organize the virtual field, will reduce clutter. Tufte (1990) illustrates this 
approach admirably. 

For example, some interface design guidelines have suggested that limits be set for 
optimal or maximum density, where density was defined as the number of graphical 
elements (pixels) versus the maximum number of locations available for graphical 
elements (the total pixels available in the display)—"18% is the optimal number of CRT 
pixels which should be lit." However, as Wertheimer indicates, the raw density of 
points of luminance is not an appropriate unit of analysis from a human perception 
point of view (nor are they the effective stimuli). Rather, one should count in units 
based on what is perceived. As Hanson (1958, p. 13) put it, "the plot is not another 
detail in the story, nor is the tune another note." 

Tufte discusses how adding more marks need not result in a more cluttered display; the 
added marks may serve to organize the data. "It is not how much empty space there is, 
but rather how it is used. It is not how much information [read, data] there is, but 
rather how effectively it is arranged" (Tufte, 1990, p. 50). Clutter results from a failure 
to design the elements into a coherent perceptual organization or from a failure to 
manipulate the elements so that the resulting perceived organization captures a 
meaningful organization in the referent domain. Clutter occurs when people can 
perceive only the perceptual attributes themselves instead of a small number of objects, 
their parts, and their inter-relationships in the scene. Perceptual organization 
(perceptual grouping and figure /ground relationships) is one critical factor in avoiding 
clutter and confusion. We perceive objects and events rather than elemental physical 
parameters of the stimuli themselves. For human perception, attributes cohere to form 
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objects and events, and we always experience all of the perceptual attributes associated 
with an object. 

3.2.2 Control of Attention. 

Everyone knows what attention is. It is the taking possession by the 
mind, in a clear and vivid form, of one out of what seem several 
simultaneously possible objects or trains of thought. 

William James, 18901, pp. 403-404 

We are able to focus, temporarily, on some objects, events, actions in the world or 
on some of our goals, expectations or trains of thought while remaining sensitive to new 
objects or new events that may occur. 

Focus of attention is not fixed, but shifts to explore the world and to track 
relevant changes in the world. On flight decks, in operating rooms, and everyday work 
activities, attention must flow from object to object and topic to topic. In other words, 
one re-orients attentional focus to a newly relevant object or event from a previous state 
where attention was focused on other objects or on other cognitive activities (such as 
diagnostic search, response planning, and communication to other agents). New 
stimuli are occurring constantly. Sometimes such new stimuli are distractions. But 
other times, any of these could serve as a signal we should interrupt ongoing lines of 
thought and re-orient attention. This re-orientation involves disengagement from a 
previous focus and movement of attention to a new focus. Interestingly, this control of 
attentional focus can be seen as a skillful activity that can be developed through training 
or supported (or undermined) by the design of artifacts and intelligent machine agents. 

Thus, a basic challenge for any cognitive agent at work is where to focus 
attention next in a changing world. Which object, event, goal, or line of thought we 
focus on depends on the interaction of two sets of activity. One of these is goal or 
knowledge directed, endogenous processes that depend on the observer's current 
knowledge, goals, and expectations about the task at hand. The other set of processes 
are stimulus- or data-driven where attributes of the stimulus world (unique features, 
transients, new objects) elicit attentional capture or shifts of the observer's focus. These 
salient changes in the world help guide shifts in focus of attention or mindset to 
relevant new events, objects, or tasks. 

The ability to notice potentially interesting events and know where to look next 
(where to focus attention next) in natural perceptual fields depends on the coordination 
between orienting perceptual systems (i.e., the auditory system and peripheral vision) 
and focal perception and attention (e.g., foveal vision). The coordination between these 
mechanisms allows us to achieve a "balance between the rigidity necessary to ensure 
that potentially important environmental events do not go unprocessed and the 
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flexibility to adapt to changing behavioral goals and circumstances" (Folk et al. 1992, p. 
1043). 

The orienting perceptual systems function to pick up changes or conditions that 
are potentially interesting and play a critical role in supporting how we know where to 
look next. To intuitively grasp the power of orienting perceptual functions, try this 
thought experiment mentioned by Woods and Watts (1997): put on goggles that block 
peripheral vision, allowing a view of only a few degrees of visual angle. Now think of 
what it would be like to function and move about in your physical environment with 
this handicap. Perceptual scientists have tried this experimentally through a movable 
aperture that limits the observer's view of a scene (e.g., Hochberg, 1986). Although 
these experiments were done for other purposes, the difficulty in performing various 
visual tasks under these conditions is indicative of the power of the perceptual 
orienting mechanisms. 

3.2.3 Anomaly-Based Processing. 

... readiness to mark the unusual and to leave the usual unmarked—to 
concentrate attention and information processing on the offbeat. 

J. Bruner, 1990, p. 78 

Another hallmark of human cognitive processing is that we tend to focus on 
departures from typicality (this is demonstrated at all levels of processing). We do not 
respond to absolute levels but rather to contrasts and change. Meaning lies in 
contrasts—some departure from a reference or expected course. 

Our attention flows to unexpected events. An event may be expected in one 
context and therefore go apparently unnoticed, but the same event will be focused on 
when it is anomalous relative to another context. An event may be an expected part or 
consequence of a quite abnormal situation, and therefore draw little attention. But in 
another context, the absence of change may be quite unexpected and capture attention 
because reference conditions are changing. 

Our processing is tuned to contrasts-how behavior departs or conforms to the 
contrasting case. We process how the actual course of behavior follows or departs from 
reference or expected sequences of behavior given the relevant context. 

4. Understanding Cognitive Processes Points to Human-Centered Techniques 

4.1 Constraints on Effective Solutions to Data Overload 

This diagnosis has led us to identify a number of constraints on effective 
solutions to data overload. 
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1. All approaches to data overload involve some sense of selectivity. 

However, there are different forms of selectivity: facilitation or inhibition of 
processing. In the former, selectivity facili tates or enhances processing of the selected 
portion of the whole. In this form of selectivity, we use positive metaphors such as a 
spotlight of attention or a peaked distribution of resources across the field. 

In the latter, selectivity inhibits processing of non-selected areas, for example 
stimuli in the selected portion can pass through and go on for further processing, 
whereas stimuli in the non-selected portion do not go on for processing. In this form of 
selectivity, we use negative metaphors such as a filter or a gatekeeping function. 

Current research on cognitive solutions to data overload suggests that we need 
to develop positive forms of selectivity and develop techniques that support thorough 
exploration of the available data. This is the case in part because observers need to 
remain sensitive to non-selected parts in order to shift focus fluently as circumstances change or 
to recover from missteps. 

2. Organization precedes selectivity. 

Selectivity presumes a structured field on which attention can operate, focusing 
on potentially interesting areas depending on context. Designers of computer 
technology need to define the groups/objects/events and relationships attention can 
select. 

The default in computer systems has been to organize around elemental data 
units or on the units of data appropriate for computer collection, transmission, and 
manipulation (Flach et al., 1995). These are either too elemental, as if we saw the world 
in "327" variations in hue, saturation, and brightness, or too removed from the 
meaningful objects, events, and relationships for the user's field of practice. 

This finding means that effective systems for coping with data overload 
• will have elaborate indexing schemes that map onto models of the structure of the 

content being explored 
• will need to provide multiple perspectives to users and allow them to shift 

perspectives easily 

3. All techniques to cope with data overload must deal with context sensitivity. 

Data are informative based on relationships to other data, relationships to larger 
frames of reference, and relationships to the interests and expectations of the observer. 
Making data meaningful always requires cognitive work to put the datum of interest 
into the context of related data and issues. 
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This finding means that solutions to data overload will help practitioners put 
data into context. Presenting data in context shifts part of this burden to the external 
display rather than requiring the observer to carry out all of this cognitive work "in the 
head." 

This can be done in many ways. When we display a given datum, we can show 
it in the context of related values. Rather than organizing displays around pieces of 
data, we can organize data around meaningful issues and questions-model based 
displays. These are models of how data relationships map onto meaningful objects, 
events, and processes in the referent field of activity (Flach et al., 1995). 

We can use the power of the computer to help extract events from the flow of 
elemental data. Events are temporally extended behaviors of the device or process 
involving some type of change in an object or set of objects. The computer could also 
help observers recognize anomalies and contrasts by showing how the data departs 
from or conforms to the contrasting case (a departure from what is expected, from what 
is the plan or doctrine, from what has been typical). Since there are usually many 
possible contrasting cases, each defines a kind of perspective around which one views 
the elemental data available. 

There is a prerequisite for the designer to be able to put data into context: they 
need to know what relationships, events, and contrasts are informative in what contexts 
in the field of practice. 

4. Observability is more than mere data availability. 

The greatest value of a picture is when it forces us to notice what 
we never expected to see. 

Tukey, 1977, p. vi 

There are significant differences between the available data and the meaning or 
information that a person extracts from that data. Observability is the technical term that 
refers to the cognitive work needed to extract meaning from available data. This term 
captures the relationship among data, observer, and context of observation that is 
fundamental to effective feedback. Observability is distinct from data availability, 
which refers to the mere presence of data in some form in some location. For human 
perception, "it is not sufficient to have something in front of your eyes to see it" 
(O'Regan, 1992, p.475). 

One example of displays with very low observability occurs on the current 
generation of flight decks. The flight mode annunciations are a primary indication of 
how automated systems are configured to fly the aircraft. These crude indications of 
automation activities contribute to automation surprises where the automation flies the 
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aircraft in a way that the pilots did not anticipate. As one pilot put it, "changes can 
always sneak in unless you stare at it" (see Woods and Sarter, in press for more on this 
example). 

Observability refers to processes involved in extracting useful information. It 
results from the interplay between a human user knowing when to look for what 
information at what point in time and a system that structures data to support 
attentional guidance (see Rasmussen, 1985; Sarter, Woods and Billings, 1997). The 
critical test of observability is when the display suite helps practitioners notice more than what 
they were specifically looking for or expecting (Sarter and Woods, 1997). If a display only 
shows us what we expect to see or ask for, then it is merely making data available. 

5. To cope with data overload, ultimately, will require the design of conceptual spaces. 
One builds a conceptual space by depicting relationships in a frame of reference 
(Woods, 1995; Rasmussen et al., 1994). 

The search to solve data overload begins with the search for frames of reference 
that capture meaningful relationships for that field of practice. A frame of reference is a 
fundamental property of a space and what makes a space or map special from the point 
of view of representation. With a frame of reference comes the potential for concepts of 
neighborhood, near/far, sense of place, and a frame for structuring relations between 
entities. A frame of reference is a prerequisite for depicting relations rather than simply 
making data available. 

Almost always there are multiple frames of reference that apply. Each frame of 
reference is like one perspective from which one views or extracts meaning from data. 
Part of designing a conceptual space is discovering the multiple potentially relevant 
frames of references and finding ways to integrate and couple these multiple frames. 

4.2 Typical Finesses to Avoid the Context Sensitivity Problem 

Standard approaches to data overload generally try to finesse the context 
sensitivity problem, either avoiding or hiding how context affects what is informative. 
For example, all of the following finesses have been tried with minimal success in 
coping with data overload in alarm systems (Woods, 1995b). 

Calling these techniques finesses points to a contrast. In one sense, a finesse is a 
positive pragmatic adaptation to difficulty. All of these finesses are used to try to 
reduce data overload problems to manageable dimensions to allow experienced people 
to exhibit the fundamental human competence at extracting significance from data. 
However, a finesse is a limited adaptation because it represents a workaround rather 
than directly addressing the factors that make it difficult for people to extract meaning 
from data. Technology-centered approaches to data overload generally adopt strategies 
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based on one or more of these finesses because of inaccurate or oversimplified models 
of why data overload is a generic and difficult issue. 

Typical finesses that attempt to skirt the cognitive challenges that underlie data 
overload include: 

(a) the scale reduction finesse—reduce available data. 

Scaling back the available data is an attempt to reduce the amount of stuff people 
have to sort through to find what is significant. The belief is that if we can keep the 
scale of the problem manageable, then human abilities to find the critical data as the 
context changes will function adequately. Often scale reduction attempts are 
manifested as shifting some of the available data to more "distant" secondary displays 
with the assumption that these items can be called up when necessary. 

This approach breaks down because of the context catch—in some contexts some 
of what is removed will be relevant. Data elements that appear to be less important on 
average can become a critical piece of evidence in a particular situation. But 
recognizing their relevance, finding them and integrating them in to the assessment of 
the situation becomes impossible if they have been excluded or pushed into the 
background of a virtual data world. 

This finesse also breaks down because of the keyhole catch—it creates navigation 
burdens by proliferating more displays hidden behind the keyhole of the CRT screen 
(Woods and Watts, 1997). This occurs when scale reduction is applied to individual 
displays. Reducing the data available on individual displays pushes data onto more 
displays increasing demands for across display search and integration. 

Ultimately, the irony of scale reduction as a finesse is that it runs counter to the 
technological trend - if one of the benefits of technology is more access to data, it is 
ironic that people have to throw away some of that access to cope with the complexity 
of trying to work with the available data. 

(b) the global, static prioritization finesse—only show what is "important." 

A related finesse is to select only the "important" subset of the available data. 
Often, the world of data is divided into two or three "levels of importance." Domain 
knowledge is used to assign individual data items to one of the two or three levels. All 
data items identified in the highest level of "importance" would be displayed in a more 
salient way to users. Data elements that fall into the second or third class of less 
important items would be successively less salient or more distant in the virtual world 
of the display system and user interface. 
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This approach also breaks down because of the context catch—how do we know 
what is important without taking context into account? Context sensitivity means that 
it is quite difficult to assign individual elements to a place along a single, static, global 
priority, or importance dimension. Inevitably, one is forced to make comparisons 
between quite disparate kinds of data and to focus on some kinds of situations and 
downplay others. Again, data items that are not important based on some overall 
criteria can be critical in particular situations. 

This finesse, like the first, uses inhibitory selectivity, that is, they both, in effect, 
throw away data. In this case, developers will object saying that users can always call 
up data assigned to lower levels of importance if they feel they are relevant in a 
particular situation. But the problem is to help people recognize or explore what might 
be relevant to examine without already knowing that it is relevant. To aid this process 
requires one to consider perceptual organization, control of attention, and anomaly 
recognition as discussed earlier. 

(c) the intelligent agent finesse—the machine will compute what is important for you. 

Another version of the context catch plagues this approach—how does the 
machine know what is important without being able to take context into account? 

However, this finesse also breaks down in the face of a new catch—the clumsy 
automation catch. The observer now has another data source/team member to deal with 
when they can least afford any new tasks or any more data (Sarter et al., 1997). 

All intelligent agent algorithms, from agents programmed by practitioners 
specifically to flag data items to agents that "learn" rules from observing practitioners, 
are unable to escape the need to take context into account. The irony here is that 
developers believe that shifting the task to a computer somehow makes the cognitive 
challenges of focusing in on the relevant subset disappear. In fact, all finite cognitive 
processors face this challenge, whether they are an individual, a machine agent, a 
human-machine ensemble, or a team of people. It always takes cognitive work to find 
the significance in data. 

For example, attempts in the mid-80's to make machine diagnostic systems 
handle dynamic processes ran into a data overload problem (these diagnostic systems 
monitored the actual data stream from multiple sensors). The diagnostic agents 
deployed their full diagnostic reasoning power in pursuit of every change in the input 
data streams (see Woods, Pople, and Roth, 1990; Roth, Woods and Pople, 1992; Woods, 
1994). As a result, they immediately bogged down, dramatically failing to handle the 
massive amounts of data now available (previously, people mediated for the computer 
by selecting "significant" findings for the computer to process). To get the diagnostic 
systems to cope with data overload required creating a front end layer of processing 
that extracted, out of all of the changes, which events were "significant" findings that 

25 



required initiating a line of diagnostic reasoning. In this case, determining what were 
significant events for diagnosis required determining what were unexpected changes 
(or an unexpected absence of a change) based on a model of what influences were 
thought to be acting on the underlying process. 

(d) the syntactic finesse—use syntactic or statistical properties of text (e.g., word 
frequency counts) as cues to semantic content. 

This finesse is relied on heavily in keyword search systems, web search engines, 
and information visualization algorithms that utilize "similarity" metrics based on 
statistical properties of the text (e.g., frequency counts of different content words) to 
place documents in a visual space (e.g., Morse & Lewis, 1997; Wise, Thomas, Pennock, 
Lantrip, Pottier, Schur, & Crow, 1996). The primary limitation of this approach is that 
syntactic and statistical properties of text provide a weak correlate to semantics and 
domain content. There is rarely a simple one to one relationship between terms and 
concepts.  It is frequently the case that one term can have multiple meanings (e.g., 
Ariane is both a rocket launcher and a proper name; ESA stands for the European Space 
Agency, Environmental Services Association, and the Executive Suite Association) and 
that multiple terms can refer to the same concept (e.g., the terms "failed," "exploded," 
"was destroyed" can be used interchangeably). 

The problem is compounded by the fact that the "relevance" metrics employed 
(e.g., the weighting schemes used by web search engines) are often opaque to the user. 
This is the lack of observability catch. The user sees the list of documents retrieved based 
on the query and the relevance weighting generated by the search engine.  However, in 
many cases how the relevance weighting was generated is unclear, and the resulting 
document ordering does not accord well with how the user would have prioritized the 
documents (i.e., documents that come up early with a high weighting can be less 
relevant than documents that come up later.) This forces the user to resort to 
attempting to browse through the entire list. Since the generated list is often 
prohibitively long, it can leave the user unsure about whether important documents 
might be missed. Users will often prefer to browse documents ordered by metrics that 
do not attempt or claim to capture "relevance," such as date or source, rather than by 
syntactic relevance weighting because the organizing principle is observable and they 
know how to interpret values along those dimensions. 

Attempts to place documents in a visual space based on syntactic properties are 
also subject to the over-interpretation catch.  The spatial cues and relationships that are 
visible to the observer will be interpreted as meaningful even if they are incidental and 
not intended to be information bearing by the designer. For example, visualizations 
that attempt to represent multi-dimensional spaces (4 or more dimensions) on a two 
dimensional display can create ambiguities with respect to the position of a document 
relative to each of the dimensions. Users may assume that two documents that are 
located close to each other on the display reflect a similar degree of relationship to each 
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of the dimensions represented in the space, when in fact they are not in the same 
position in the multi-dimensional space - even though it looks that way on the display. 
Similarly, information visualizations that attempt to reveal thematic relationships 
between documents through visual patterns are subject to over-interpretation. The 
visualizations can be dominated by patterns that are unimportant, such as missing data, 
and the underlying relationships may be distorted in the mapping to the perceptual 
field. 

4.3 How Do People Find the Significance in Data Now? 

How do people find the significance of data even though they are confronting an 
expanding field of data? 

In many environments, there are artifacts, often quite traditional artifacts, that 
assist people.  We find that artifacts that represent abstract data in a physical, spatially 
dedicated space help people cope with data overload to some degree. One example of 
this is traditional control centers. Ironically, the move to computerized control centers 
has created a massive data overload problem as the mechanisms, albeit crude ones, that 
supported the cognitive activities involved in finding the significance in data were 
removed and while the computerization led to an explosion in the number of displays 
that could be called up on one of a few CRT screens (see Woods and Watts, 1997 for a 
summary of this change). In other cases, we have found that users will tailor highly 
flexible devices to try to create a physically distributed workspace where individual 
types of data or data sources occur in one fixed position (Woods et al., 1994, chapter 5; 
Woods and Watts, 1997). 

Another kind of artifact that seems to help people cope with data overload to 
some degree is event capture mechanisms. These are typically very crude mechanisms 
that indicate state changes or limit crossing such as annunciators in traditional control 
centers. Interestingly, work on data overload on the web has re-discovered the need for 
and re-created such basic event capture mechanisms as part of software agents that 
notify users when such events have occurred. 

A different kind of coping strategy is found in the distribution of work. When 
confronted with the potential for data overload, organizations sometimes adopt or shift 
to a watch organization. In this case, people are assigned to monitor a portion of the 
overall data field (a subsystem or subfunction) reporting to supervisors who integrate 
reports from focused individuals or sub-teams. The most notable successful example of 
this is the structure of mission control for the Space Shuttle at Johnson Space Center 
(Patterson, Watts-Perotti, and Woods, in press, Watts et al., 1996). Coordination across 
people is an important component of how such work organizations are able to extract 
the significance from elemental data (e.g., Hutchins, 1990). 
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Different ways to organize work are more than mechanisms to cope with 
workload bottlenecks. The success of work organizations depends on and facilitates a 
build up of human experience and practice which provides people with the expertise to 
find the significance of data (usually) themselves with limited external support. This 
points to the most general coping strategy for data overload—human expertise and 
experience (what Norman, 1990a calls knowledge in the head). Ironically, the 
organizational changes underway today challenge coordination in the distribution of 
work as economic pressures reduce the investment in human expertise often while 
demanding more coordinated assessments and activities to deliver "just in time 
expertise." 

4.4 Context-Sensitive Approaches 
The promise of new technology is more than making data available. New 

technology does provide the power to develop external support for the cognitive 
activities involved in extracting the significance from data. The question is how to use 
that power. Ironically, this power can be used (and has been) to exacerbate data 
overload as well as to support people's ability to interpret large fields of data. 

The diagnosis presented here points to criteria and constraints, in particular the 
central role of context sensitivity, that need to drive an innovation process. Using the 
basic human competence for finding what is informative in natural perceptual fields 
despite context sensitivity is another guide for innovation. 

We will not attempt to lay out a complete set of techniques here. That work lies 
ahead of us in this project. However, one can already see the outlines of some of these 
techniques. For example, one family of techniques can be termed sharpening where local 
outposts of contextual data are used to compute aspects of what is relevant. These are 
areas where how context affects what is informative is well understood and robust. 

Another family of techniques is concerned with re-organization/re-representation— 
more marks can reduce "clutter" if they produce a larger organization. One example of 
this is what Tufte (1990) terms micro/macro displays. These displays graphically 
combine two levels of analysis of the data field (for example, individual patients and 
the status of the sector in aeromedical evacuation planning; see Potter et al., 1996). A 
more elemental level is represented by individual graphic elements (patients in this 
example) which combine to produce an emergent structure that captures higher order 
properties (the state of the overall schedule and bottlenecks), while preserving access to 
the lower level elements (ability to trace an individual's status and itinerary). 

Model-based representations are another direction. In this family, the semantics of 
the underlying processes or field of activity are used to help define the relationships 
that give data meaning (Vicente and Rasmussen, 1992). Related techniques would 
develop expectation based displays that highlight when events depart from expected or 
typical behavior and event based displays that capture the flow of events in the world 
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at different levels of abstraction or in comparison to the expected flow of events (Potter 
and Woods, 1991). 

Such techniques become the basis for developing pattern based displays and 
conceptual spaces that support people's abilities to explore spatially structured 
environments and recognize patterns across elements. For many kinds of data overload 
problems, there will be multiple organizing themes each of which defines a perspective 
on the field of data. Mechanisms to help users coordinate across a set of these 
perspectives will be needed. 

However, all of these families of techniques have their own "catches," just as the 
finesses we explored earlier. Sharpening methods can fall prey to a completeness catch. 
New representations are subject to the catch of custom innovation—each is a unique 
creation tailored to a specific setting. Model-based methods to depict more than the 
base data are subject to an uncertainty catch—given high uncertainty in the data and 
significant consequences in possible outcomes, experts tend to revert to raw data, and 
the "right" model catch—how do you know the model that specifies how data is 
informative is appropriate for the task or situation? Expectation based displays are 
limited by the fact that it can be difficult to track/compute expectations about a process 
or about another agent. 

All of these approaches hold promise for going beyond data availability to aid 
how a person extracts meaning from data. They demonstrate the need to develop ways 
to use the power of technology 

• to enhance observability, 
• to take into account context sensitivity, and 
• to build conceptual spaces 

These are some of the areas to make progress in if we are to escape the flood of data that 
technology has made available to all of us in so many settings. 
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PART III. THE INTELLIGENCE ANALYSIS VERSION OF DATA OVERLOAD 

5. Intelligence Analysis Is a Challenging Version of Data Overload 

Intelligence analysis in the United States is undergoing simultaneous 
organizational and technological change. Resulting from a shift in emphasis from the 
Cold War paradigm of monitoring a small number of countries for their ability to 
directly attack the United States to monitoring many more countries for a more diverse 
set of reasons (e.g., peacekeeping and humanitarian interventions), analysts are now 
being asked to cover a more diverse set of countries and technologies. At the same 
time, there have been reductions in both staffing and average years of experience. The 
net result is that intelligence analysts are increasingly asked to analyze situations that 
are outside their immediate base of expertise on shorter time horizons, increasing 
workload constraints and vulnerability to superficial or erroneous assessments. 

In addition to this organizational backdrop, there are technological changes 
continuously underway. There has been a significant increase in the available amount 
of electronic data, particularly data that has not been generated specifically for 
intelligence analysis (e.g., information on the World Wide Web). This increase in data 
has generated interest in systems that are attempting to help analysts cope with the 
data, such as keyword search and browsing/filtering aids. These systems are also 
impacting cognitive workload—reducing some aspects while creating new types of 
cognitive work (e.g., managing lists of keywords that select incoming messages on a 
daily basis). 

Given this situation, two characterizations of data overload and their associated 
solutions are relevant to intelligence analysis. The characterization of data overload as 
a workload bottleneck is a useful characterization. The increased workload demands 
have created bottlenecks that could potentially be alleviated by automation designed to 
coordinate its activities with the practitioner. For example, intelligent agents could 
organize available data for the analyst (e.g., by report quality). In addition, intelligent 
agents could critique the ongoing analysis process, for example, by tracking the 
"breadth" of the sampling of reports in relation to the available databases, detecting 
when sampling might be narrow, and suggesting broadening strategies. 

Secondly, the characterization of data overload as a problem in finding the 
significance of data is clearly relevant to intelligence analysis. Given a reduction in the 
base of human expertise and reduced time to respond to analysis questions, it is 
important that the data be organized based on a model of domain semantics (e.g., ethnic 
group dynamics in sub-Saharan Africa or the structure of rocket launch programs for 
commercial and military satellite launch). This will allow analysts to better recognize 
unexpected, informative patterns and determine how an event is embedded in a 
contextual flow of other related events. Similarly, representation aids are needed that 
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allow the practitioners to more quickly target the most relevant and profitable 
information and display the relationship of that information to other information that 
would corroborate it or conflict with it. 

These kinds of displays have been termed model-based because they organize 
the suite of data displays on models of domain content and semantics rather than on 
properties of data per se (e.g., Woods, 1991; Vicente and Rasmussen, 1992).6 It is 
important to remember that organizing data around models of the domain or field of 
practice is not the same as examining data with a pre-conceived solution in mind. 
Organizing data around fundamental relationships inherent in the process in question, 
rather than around data elements, is necessary, not optional, in the cognitive work 
needed to extract significance from data. While needed, the process can be flawed. 
People can carry out this cognitive process in their head without significant external 
assistance, or we can provide artifacts to assist in this process while remaining sensitive 
to how it can break down. One aspect of research in this area is concerned with how to 
provide robust functional models to use as the basis for display design (e.g., Flach et al., 
1995). 

While it is important to recognize the elements in data overload that are common 
across diverse operational settings in order to build upon existing research bases and 
design ideas, it is also important to identify the characteristics that are unique to 
intelligence analysis. There are several factors that complicate the practitioner's 
cognitive activities in intelligence analysis, as compared to those of practitioners in 
more heavily studied worlds. These include 

• the kind of processes being monitored, 

• the nature of the data available about the state of those processes, and 

• the capabilities of the tools available to support analysis. 

5.1 Monitoring Human/Organizational Processes 

Cognitive engineering studies and designs generally have been addressed at 
practitioners who monitor and control engineered or sometimes physiological 
processes. In intelligence analysis, the underlying process that is monitored (what we 
refer to as the monitored process) is sometimes a technical process (e.g., 
communications network technology or the technology of specific weapons systems), 
but often consists of various kinds of human/organizational processes. For example, in 
analyzing events in one region of the world, an analyst may need to understand current 
and past ethnic group processes, alternative kinds of political processes—such as those 

6 They are also referred to as pattern-based, integrated, emergent property, or object displays in the 
literature. The term model based refers to the use of an organizing principle based on the structure, 
function, and activities in the underlying process. 
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of a theocracy—economic processes, geopolitical processes, and the development and 
implementation of military doctrine, to name just a few. 

Adding such human/organizational processes to the mix leads us to consider the 
differences between different kinds of monitored processes. Figure 2 indicates that 
monitored processes can be loosely ordered on a dimension that describes how 
"definitive" we can be both in understanding and in modeling how the processes work. 
Figure 2 illustrates this dimension by ordering three classes of monitored processes: 
engineered, physiological, and human/organizational processes. 

Engineered processes are physical systems that are designed and implemented 
by people, and are exemplified by such systems as the space shuttle, nuclear power 
plants, and military and commercial aircraft. These processes obey well understood 
physical laws. Physiological processes are self-tuning processes that exist naturally in 
the environment but can be altered by human intervention, as is the case in 
cardiovascular systems during open heart surgery. Human/organizational processes 
involve situations or activities in which groups of people interact, such as situations of 
low-intensity regional conflicts or activities involving supply logistics, economic 
behavior, or development and application of military doctrine. These processes may be 
defined or described by sets of rules, but these rules provide only a partial description 
of the actual behavior of people or organizations (e.g., for various reasons a military 
unit may deploy in a way inconsistent with standard doctrine). 

More "Definitive" Less "Definitive"- 

Engineered 

Ex: Space Shuttle 
Aviation 
Nuclear Power 

• Functional models 
• Designed system 
• Physical laws 

Physiological 

Ex: Cardiovascular System 

1 Models of physiological 
systems and effects of 
interventions 

• Self-tuning 

Human/Organizational 

Ex: Low-intensity regional conflict 

Models of: 
• Military doctrines 
• Economics 
• Geo-political 
• Ethnic/Social 

Figure 2. Different kinds of monitored processes can be ordered on a dimension of 
how "definitive" we can be in understanding, modeling, and predicting 
how that process works. 

Highly "definitive" models, such as models of physical systems that were 
designed by people to accomplish certain goals, provide comparatively strong 
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analytical frameworks because their component parts obey and are constrained by 
physical laws (e.g., heat exchangers always work a certain way functionally). Note that 
for all monitored processes, uncertainty and variability exist, but that the degree of 
uncertainty and variability changes as we move from less to more "definitive." 

Many kinds of monitored processes can be relatively well-modeled at a 
functional level but are complex enough that many situations arise that are not 
predicted in advance. For example, regarding physiological systems, we know a great 
deal about the laws that govern such processes. However, we find that 

• the models of physiological systems are not as detailed and accurate as those of 
the typical engineered process, 

• the individual differences in physiological systems are larger between people 
than they are within analogous components of an engineered process (such as 
the variations found within examples of a particular model of aircraft), 

• physiological processes have built in interactions and self-tuning control loops 
that are difficult to model completely. 

In intelligence analysis, the models that are available to analysts are less 
"definitive" than the models available in engineered and physiological processes. 
Rather than a functional model, the frameworks available to analysts tend to be 
collections of heuristics and knowledge, such as how the military doctrine of a 
particular country's armed forces would influence behavior in a particular situation. 
These "models" are inherently less precise and support weaker predictions about actual 
behavior in specific situations. Yet these models are still very important, because the 
skilled use and application of these models is what is responsible for the recognizable 
differences in performance between more and less experienced analysts. 

An additional complication in modeling human/organizational processes is that 
the division is less clear-cut between the "supervisory controller" and the "monitored 
process" given that the processes being monitored by intelligence analysts involve 
people. In engineered processes, for example, people are clearly outside of the 
processes to be monitored. Even in engineered processes, the roles of different people 
in the operational system can become quite complex in terms of scope of authority, 
supervisory control, and field of view. However, in discussing engineered processes, 
usually the confusion we try to guard against is ambiguity about the different roles 
different machines can play. The monitored process is technological, but we also now 
create machines that help us observe, evaluate, diagnose, and act on the monitored 
process. These support systems and automation are usually better seen as a part of the 
operational team along with the human monitors and supervisors (Billings, 1996). 
Similarly, with physiological processes the role of technology can be ambiguous: is it 
part of the process, (e.g., a programmable pacemaker), or is it part of the treatment 
team, (e.g., an infusion device)? But another potential complication emerges with 
physiological processes since the people are both the process being controlled and the 
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Controllers, (e.g., the patient, the physiological processes in question, can be part of the 
treatment process; see the case in Obradovich and Woods, 1996). 

In the case of human/organizational processes, people, groups of people, or 
human organizations are active in every role. In an attempt to reduce the potential for 
confusion, Figure 3 provides a very rough schematic of the interacting roles when the 
monitored process is human/organizational. The figure contains three global roles 
(represented as the columns): 

1. People in other parts of the world in various roles as part of economic, 
political, religious, ethnic, and military processes. 

2. People in U.S. organizations in various roles as monitors of those processes 
(intelligence analysts) and as policy makers who decide about U.S. policies 
and actions in response to events in those parts of the world. 

3. Investigators who try to understand the role of intelligence analysts and help 
shape new supporting tools to cope with issues like the potential for data 
overload. 

The figure is tremendously oversimplified. There are other groups (e.g., 
humanitarian) and governments monitoring events in one part of the world that 
influence or shape the interactions. Governments may be watching and predicting how 
their people will behave (e.gr, polls) or how different subgroups (e.g., constituencies) 
will react to different events, while outsiders may be monitoring how one group is 
anticipating how other groups will behave. 

Investigators Watching Analysts Watching 

tfe 
Investigator 

Studies 

Policy Makers 

Intelligence 
Analyst 

Intervenes 
 ► 

Analyzes 

Government 
Allies 
Adversaries 
Rival political parties 

Citizens 
Rural/Urban 
Socio-economic strata 
Ethnic groups 
Religious beliefs 

Figure 3. Analysts monitoring a human/organizational process. 
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5.2 The Nature of Data Available to Intelligence Analysts 

In all of these different domains, the processes are monitored with data that is 
captured through "sensors." The nature of the data that is available is dependent on 
how the sensor information is processed, packaged, and displayed. In engineered and 
physiological processes, there are physical sensors placed at various points that monitor 
certain variables continuously. In general, the sensors always monitor the same thing in 
the same way and are displayed as single parameter sensor readings in dedicated 
locations (although there has been movement away from this one-sensor, one display 
organization with displays that integrate parameter values based on functional models 
of how the process works). In engineered processes, it is possible, though complicated, 
to define "nominal ranges" and signal an alarm when a parameter goes out of the 
nominal range. In physiological processes, it is also possible to point to possible limit 
values, but they function much more as landmarks or very general guidance because 
"significant" values depend so much on the patient and context. For example, what is 
too much or too little of some parameter for an individual may vary tremendously 
based on the stage of the surgical procedure, previous disease history, or relative to a 
baseline established for that particular individual at that particular time. In intelligence 
analysis the situation is even more difficult. It is not easy to flag abnormal data; indeed 
that may be part of the analysis process itself. It is often contentious what is an 
abnormal state, and even when it is not, there are currently no systems that can reliably 
recognize and flag textual descriptions of abnormal states. 

When monitoring less definitive human/organizational processes, the "sensors" 
are more diffuse, with data about the process gathered remotely, indirectly, or by 
human observers on the scene. In human/organizational processes, when humans 
serve as the "sensors," the situation is actually better, in a sense. People can use their 
intelligence in terms of what variables to sample and what format is best to use to 
describe their observations. On the other hand, the data becomes more difficult to find 
and interpret because there is less consistency about what is sampled, how it is 
sampled, and where the information is displayed. In addition, there is the qualitative 
difference created by the fact that human/organizational processes are intentional 
systems. They can realize that they are being monitored and change their behavior or 
actively attempt to deceive observers. The observational sub-processes may, in fact, be 
specifically targeted for destruction, disruption, degradation, or denial. 

Note that sensor data is not the only form of data available in any of these 
processes. Direct observation of the process, either by the supervisory controller or 
other agents in the distributed system, plays a role. In engineered processes, for 
example, controllers can directly touch a pipe to determine if it is hot. In physiological 
processes, anesthesiologists can look directly at the surgical field or check the color of 
the skin (e.g., if one notices the patient turning blue, then it is clear something is 
preventing adequate oxygenation of tissues). In intelligence analysis, agents can 
directly perceive information from satellite pictures or receive reports from agents who 
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are dispersed to the area of interest to opportunistically perceive and report 
information. 

In all of these domains, the reliability of the data is a critical concern. Physical 
sensors in engineered and physiological processes are uncertain indicators because they 
are placed in only a few locations; they are, in fact, model-based: the parameter of 
interest is often measured indirectly through other more tractable data, and they can 
fail. Data that is obtained through direct perception could also be unreliable: the 
observation relies upon the expertise and perceptual ability of the observer to identify 
subtle cues. In intelligence analysis, data comes in the form of reports created by 
humans who serve as the "sensors." The reports integrate a selection of data based on 
an interpretation and therefore need to be "unpacked" in order to identify the elemental 
data, which is used to generate an analysis product with a potentially different 
interpretation frame. People may bring a new set of reporting biases that create new 
forms of uncertainty. In addition, the difference between a normal state and an 
abnormal observation is contentious, and there is the added complication that the 
adversary in human/organizational processes may deliberately attempt to deceive the 
"sensors." As a result of the potential for unreliable data, similar strategies are 
observed in all of these different domains where data is cross-checked from 
independent sources in order to determine if the sensor is providing "invalid" data. 

In intelligence analysis, data conflicts can be more subtle than in other domains 
due to the nature of the data. With engineered and physiological sensor data, there are 
concerns about effects being masked and sensors failing, but often the practitioners 
have the ability to check sensors on similar systems that are measuring the same 
information the same way and see if they agree. Intelligence analysts also employ a 
variation of this strategy, but it is more difficult to determine if information agrees 
because the information is often not measured the same way or at the same time and is 
not always identical in content. Analysts need to break down textual reports to a more 
elemental data level and then interpret the reports in order to determine the 
relationship of the data elements. When two or more independent sources give the 
same description of the same event, the information is more likely to be accurate. 
Schum (1987) refers to this as corroborative redundancy. When two or more sources 
provide information that inferentially favor the same hypothesis, this is referred to as 
convergent evidence which makes a particular hypothesis more likely. If information 
from two or more sources appear to corroborate or converge but stem from the same 
information source (e.g., a press release), there is no inferential value. 

Conversely, items can be conflicting by saying logically opposing things or 
favoring different hypotheses. When information is discrepant, judgments of source 
quality are often important to decide what information to incorporate in the analysis. 
Factors that are considered in the credibility of a source include competency of the 
source to understand the issue at hand (e.g., Financial Times is a good source for 
financial information), predictable biases (e.g., self-reports by individuals or companies 
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tend to be overly optimistic and less judgmental), and even attempts to actively deceive 
in the past (e.g., reports from countries with controlled media such as China might be 
publishing inaccurate accounts for political reasons). 

Nevertheless, global judgments of source quality, such as "X is a trustworthy 
source," are under-specified, oversimplifications of how variations across sources play a 
role in the analysis process. Although certain sources are weighted as more credible 
than others based on past experience with a source, these judgments need to be 
tempered by other cues. Reports that are published immediately after the occurrence of 
an event often contain inaccuracies, although they tend to contain more detail than later 
reports. These reports are missing details that are provided in later updates - in other 
words, these reports contain "stale" information in relation to later reports. At the early 
stages, they are forced to speculate on causes without having all of the available 
information yet, and so there is a larger "hypothesis set" across reports as compared to 
later reports when there is more of a convergence on a small number of hypotheses. In 
addition, reports that are "distanced" from the original data are suspect. Having direct 
access to eyewitnesses, recorded data such as video, and telemetry data improves the 
quality of the analysis. In addition, having direct access to people who have interpreted 
the data in depth, such as the inquiry board after an accident investigation, is 
important. Reports of other reports suffer from the problems evidenced in the game 
"Telephone," where the story changes with each telling. This is exacerbated when the 
reports are translated from foreign languages. Finally, reports that are making 
predictions about future events are inherently uncertain, regardless of the competency 
of the person providing the prediction. 

5.3 The Nature of Tools Available to Intelligence Analysts 

As previously described and as we have observed in other domains, ongoing 
technological and organizational changes are fundamentally changing the task of 
intelligence analysis. As a result of data being available more in electronic media, 
shorter timelines, and a broader range of analytical responsibilities, it is becoming 
increasingly difficult, if not impossible, for analysts to read all of the potentially 
pertinent individual messages and potentially relevant reports necessary to do an 
analysis. In this new situation, the analyst now needs to search through an electronic 
data-base/document-base in order to identify relevant information. This is the "new 
world of data" that has begun to emerge for analysts, and therefore the nature of the 
tools available to intelligence analysts need to be somewhat different in nature than 
tools designed for real-time monitoring of sensor data in engineered and physiological 
processes. 

The main complication introduced by this new situation is the relationship 
between events in the world, database(s) of electronic information about events in the 
world, and sampled information about events in the world (Figure 4). The intelligence 
analyst rarely directly observes events in the world. Rather, other humans generate 

37 



reports about events in the world. These reports make up a set of databases whose 
characteristics are often opaque to the analyst, particularly since the available 
information is constantly being updated and the information is generally not indexed. 
Information is "sampled" from these databases, first by keyword search queries and 
then by browsing dates and titles through the computer "keyhole/' a small CRT screen. 
The relationship of the sample to the database is generally not available to the analyst 
(although some ways to characterize the database are being developed that could be 
used to determine the relationship, e.g., Wise et al., 1996). How does an analyst know if 
(s)he has read all of the available relevant information or if the information that is ' 
retrieved by a keyword search is high quality in comparison to what is available? How 
does an analyst know what information in the database is contradicted or corroborated 
by other information in the database? 

Figure 4. The analyst's new world as information sampling through a computer 
"keyhole." 

A complicating factor in the search for information is that the report is not an 
elemental data unit. Intelligence analysts do not make judgments of how information is 
related at the level of the report. Instead, those judgments occur about selected 
descriptions taken from reports (Figure 5). The search and retrieval tools available to 
analysts return "bundles" at the report level, not at the level of selected descriptions 
within reports. There is no easy way for analysts to search for information that will 
corroborate a selected description at that level. Analysts would need to look for the 
selected description in all of the returned reports manually because the date and title 
information is unlikely to provide clues about the information at the level of a selected 
description. This process makes it particularly difficult for analysts to know when 
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information about a topic has been updated or changed without reading all of the 
available documents. 

Events in 
the World 

Reports 
on Events 

Sampled 
Reports 
on Events 

Selected 
Descriptions 
in Reports 

Analysis 
Product 

Figure 5. Sequence of information "bundles" in the analytical process. 

Figure 5 gives an abstract view of how data is manipulated during the analytical 
process. Events occurring in the world are represented as textual descriptions within 
reports. These reports partially overlap and are distorted by the interpretation of the 
reporters on what the event was in relation to past, present, and future contexts. An 
analyst samples a subset of the available reports using keyword search and browsing 
mechanisms. The analyst then must break down the report into smaller units in order 
to compare whether descriptions in different reports are corroborating or discrepant 
along various dimensions. The corroborated descriptions are then incorporated into a 
coherent story, the analysis product, based on an interpretive frame provided by the 
analyst. 

One can imagine a variety of tools which could better support these levels of 
data manipulations, such as: 
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• model-based information visualization tools to characterize the database (e.g., event- 
based displays) 

• display of indications of report/source quality factors (e.g., "distance" from the 
primary data sources, temporal relation to event landmarks, report length) 

• targeted support/critiquing systems to broaden data sampling 
• targeted support/critiquing systems to aid the construction of a coherent story 
• targeted support/critiquing systems for tracking conflicts in the data 

We have observed in other contexts that the technology for visualization and 
software agents is necessary but not sufficient to create useful systems for practitioners 
in a work setting. Our and others' research on the use of technological powers have 
shown that computer technology for supporting data base search through visualization 
and autonomous software agents can be deployed skillfully or clumsily. The new 
world of data could overwhelm analysts with options for searching and viewing data in 
reports in the data/document base that their attention is focused more on the interface 
capabilities and less on the analysis task. On the other hand, the new world of data 
offers more possibilities for aiding the analysts as they build a picture of events in some 
area of the world or on some issue of concern. 

Based on our diagnosis of what makes data overload hard, we see that both the 
characterizations of data overload as a workload bottleneck and finding the significance 
of data are relevant to the intelligence analysis setting. In designing solutions for data 
overload in intelligence analysis, complications stemming from the kinds of processes 
that are being monitored, the nature of the available data, and the capabilities of the 
available tools need to be considered. Research efforts are underway to extract the 
relationships, events, and contrasts that are informative to intelligence analysts in an 
identified scenario (e.g., Ariane 501 launcher failure) based on the results of a 
simulation study with experienced analysts (Patterson, Roth, and Woods, in 
preparation). This case provides a forum to demonstrate more tangibly what some of 
the concepts for addressing data overload might look like for a realistic topic and event. 
The relationships, events, and contrasts that are informative in this case illustrate the 
importance of context in finding the significance of data and illustrate techniques, such 
as depicting relationships in a conceptual space, which support the cognitive system 
process of analysis. 
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